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Abstract. Prior knowledge about shape may be quite important for
image segmentation. In particular, a number of different methods have
been proposed to compute the statistics on a set of training shapes,
which are then used for a given image segmentation task to provide the
shape prior. In this work, we perform a comparative analysis of shape
learning techniques such as linear PCA, kernel PCA, locally linear em-
bedding and propose a new method, kernelized locally linear embedding
for doing shape analysis. The surfaces are represented as the zero level
set of a signed distance function and shape learning is performed on the
embeddings of these shapes. We carry out some experiments to see how
well each of these methods can represent a shape, given the training set.

1 Introduction

Image Segmentation has been a topic of extensive research in the computer vision
community [1–4].One of the challenges in the field of image segmentation is the
incorporation of prior shape knowledge in the segmentation process [5]. Many
different methods (using both parameterized or implicit representation of shapes)
have been proposed [6–10] to perform statistical shape analysis on a given set
of training shapes. In this work, we perform a comparative analysis of several
key techniques such as linear PCA (LPCA), kernel PCA (KPCA), locally linear
embedding (LLE), and then propose a new method, kernelized locally linear
embedding (KLLE) which will be compared with the aforementioned techniques.

There is a large body of literature available for representing a curve or surface
using parameterized as well as implicit methods; see [3, 11, 12] and the references
therein. A number of methods have been proposed, using these representations,
to study the statistical variations in a given set of training shapes. Cootes et al.
[6] developed a parametric point distribution model for describing the segment-
ing curve by using linear combinations of eigenvectors that reflect variations from
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the mean shape. In [13], Wang and Staib developed a statistical point model by
applying linear PCA to the covariance matrices that capture the statistical vari-
ations of the landmark points. Recently, Leventon [9] proposed a more general
model wherein PCA was performed on a set of signed distance functions. Kernel
PCA has been successfully used by the machine learning community for pattern
recognition and image denoising [14]. A Gaussian kernel was used by Cremers et
al. [8] for learning shape statistics in the kernel space to provide shape prior for
segmentation tasks. Finding the pre-image of the projection in the kernel space
is one of the challenging tasks in visualizing and computing the performance of
these kernel based techniques. In this work, we use the method proposed by [15]
to find the pre-image of the projection in the KPCA space and compare it with
LPCA.

Locally linear embedding has been widely used for dimensionality reduction
and extracting out the nonlinearities in the training data set. In this work, we
use LLE to represent a given shape using a linear combination of its nearest
neighbors. We further develop this algorithm and propose a new method to per-
form LLE in the kernel space, called KLLE, and show that it is better than LLE,
LPCA and is comparable to KPCA in terms of performance but with fewer com-
putations. Of course, the literature reviewed above is by no means exhaustive.
We merely want to point out a new technique that has some attractive features
which may act as an alternative to some already existing methodologies.

The rest of the paper is organized as follows: In the next section we briefly
describe LPCA, KPCA, LLE and provide details about KLLE. In section 3, we
show with examples how well each of these methods perform on a given data
set. Section 4 gives conclusion and future research directions.

2 Statistical Models

This section briefly describes each of the shape learning techniques used later in
the sequel. Let τ be the training set τ = {φ1, φ2, . . . , φn} consisting of n signed
distance functions (SDF) with the shapes represented by the corresponding zero
level sets. It is assumed that all the φi’s are aligned using a suitable method of
registration [6].

2.1 Linear PCA

Linear PCA is widely used to learn the statistical variations of a given set of
data (shapes, in our case). LPCA assumes that the set of permissible shapes
form a Gaussian distribution, i.e., all possible shapes can be written as a lin-
ear combination of a set of eigenshapes obtained by doing principal component
analysis on the training data set [10, 9]. The eigenshapes can be obtained as fol-
lows: Let φi represent the signed distance function corresponding to the surface
Si. The mean surface, µ, is computed by taking the mean of the signed distance
functions, µ = 1

n

∑
φi. The variance in shape is computed using PCA, i.e., the

mean shape µ is subtracted from each φi to create a mean-offset map φ̄i. Each



such map, φ̄i, is placed as a column vector in an Nd × n-dimensional matrix M,
where φi ∈ RNd

. Using Singular Value Decomposition (SVD), the covariance
matrix 1

nMMT is decomposed as:

UΣUT =
1
n

MMT (1)

where U is a matrix whose column vectors represent the set of orthogonal modes
of shape variation (eigenshapes) and Σ is a diagonal matrix of corresponding
eigenvalues. An estimate of a novel shape Φ of the same class of object can
be obtained from m principal components using an m-dimensional vector of
coefficients,

α = UT
m(Φ− µ), (2)

where Um is a matrix consisting of the first m columns of U . Given the coefficients
α, an estimate of the shape Φ, namely Φ̃, can be obtained as [9, 10]:

Φ̃ = Umα + µ. (3)

2.2 Kernel PCA

Kernel methods, in particular, kernel PCA has been the focus of research in the
pattern recognition community[16, 17]. The basic idea behind these methods is
to map the data in the input space φ ∈ χ to a feature space F via some nonlinear
map Ψ , and then apply a linear method in F to do further analysis. Kernel PCA
[14] is a nonlinear feature extractor, where PCA is performed in the feature space
F which is equivalent to doing nonlinear PCA in the input space χ. Since the
nonlinear map Ψ is not known, a challenging problem is to find the pre-image of
the projection obtained by doing PCA in the feature space F . As demonstrated
by Mika [16], the exact pre-image typically may not exist and one can only
settle for an approximate solution. But even this may be non-trivial as the
dimensionality of the feature space can be infinite. For certain invertible kernels,
this nonlinear problem can be solved using a fixed-point iteration method as
proposed by Scholkopf and Mika [14, 16]. However, this method is dependent on
the initial starting point and is highly susceptible to local minima. To circumvent
this problem, [17] and more recently [15] proposed an algorithm to reconstruct
an approximate pre-image of the projection as described briefly in the remainder
of this section.

Kernel PCA performs the traditional linear PCA in the feature space cor-
responding to the kernel k(., .). The kernel defines the inner product between
two points in the feature space, i.e., k(φ1, φ2) =< Ψ(φ1), Ψ(φ2) >. This fact
can be used to obtain the eigenvectors in the feature space F even though the
non-linear map Ψ is unknown. Analogous to linear PCA, it involves the following
eigen-decomposition

HKH = UΣUT ,

where, K is the kernel matrix with entries Kij = k(φi, φj), H is the centering
matrix given by

H = I − 1
n
11T ,



I is the n × n identity matrix, 1 = [11...1]T is an n × 1 vector, U = [a1, ...,an]
with ai = [ai1, ..., ain]T is the matrix containing the eigenvectors and Σ =
diag(λ1, ..., λn) contains the corresponding eigenvalues. Denote the mean of the
Ψ -mapped data by Ψ̄ = 1

n

∑n
i=1 Ψ(φi) and define the “centered” map Ψ̃ as :

Ψ̃(φ) = Ψ(φ)− Ψ̄ .

The k-th orthonormal eigenvector of the covariance matrix in the feature space
can then be shown to be [14]

Vk =
n∑

i=1

aki√
λk

Ψ̃(φi).

Denote the projection of the Ψ -image of a test point Φ onto the k-th component
by βk. Then,

βk =
1√
λk

n∑

i=1

akik̃(Φ, φi), (4)

where,

k̃(x, y) =< Ψ̃(x), Ψ̃(y) >= k(x, y)− 1
n
1T kx − 1

n
1T ky +

1
n2

1T K1

with kx = [k(x, φ1), ..., k(x, φn)]T
(5)

The projection of Ψ(Φ) onto the subspace spanned by the first m eigenvectors
is given by :

PΨ(Φ) =
m∑

k=1

βkVk + Ψ̄

To obtain an approximate pre-image of PΨ(Φ) in the input space, we mini-
mize the error ρ(Φ̂) =‖ Ψ(Φ̂)− PΨ(Φ) ‖2. Following the exposition in [15], for a
Gaussian kernel (also known as radial basis function) given by :

k(φi, φj) = e−
d2(φi,φj)

2σ2 (6)

where d2(φi, φj) is a distance measure in the input space, one can obtain an
approximate pre-image by setting ∇Φ̂ρ = 0 and using the approximation Ψ(Φ̂) ≈
PΨ(Φ). Here, we directly state the result for finding the pre-image Φ̂ (in the input
space χ) of the projection PΨ(Φ) [15]:

Φ̂ =

∑n
i=1 γ̃i

(
1
2 (2− d̃2(PΨ(Φ), Ψ(φi))

)
φi

∑n
i=1 γ̃i

(
1
2 (2− d̃2(PΨ(Φ), Ψ(φi))

) (7)



where γi =
∑n

k=1 βkaki and γ̃i = γi + 1
n (1−∑n

j=1 γj) and d̃2 can be computed
only in terms of the kernel using the following expression [15, 17]:

d̃2(Ψ(φi), PΨ(Φ)) =
(

kΦ +
1
n

K1− 2kφi

)T

HT MH

(
kΦ − 1

n
K1

)

+
1
n2

1T K1 + Kii − 2
n
1T kφi

(8)

where M =
∑n

k=1
1

λk
ak aT

k and Kii = k(φi, φi).
In this work, we have used the following shape similarity measure given by

[18]:

d2(φi, φj) =
∫

p∈Z(φi)

EDTφj (p)dp +
∫

p∈Z(φj)

EDTφi(p)dp, (9)

where EDTφi
is the Euclidean distance function of the zero level set of φi (one

can think of it as the absolute value of φi), and Z(φi) is the zero level set of φi.
This distance measure allows for partial shape matching and was shown [15] to
perform better (empirically) than the Euclidean L2 norm. Note that, Φ̂ is only
an approximate pre-image of the projection, since an exact pre-image may not
exist.

If we use the kernel k(φi, φj) =< φi, φj >, then KPCA is equivalent to doing
LPCA. Thus, linear PCA is a particular case of kernel PCA. Choosing the right
kernel for a given data set is a topic of active research. In this work we have
used the Gaussian kernel (6), which is the most commonly used kernel in the
machine learning community.

2.3 Locally linear embedding

The LLE algorithm [19] is based on certain simple geometric principles. Suppose
the data consists of n vectors φi sampled from some smooth underlying manifold.
Provided there is sufficient data, we expect each data point and its neighbors
to lie on or close to a locally linear patch of the manifold. We can characterize
the local geometry of these patches by a set of coefficients that reconstruct each
data point from its neighbors. In the simplest formulation of LLE, one identifies k
nearest neighbors for a data point. Reconstruction error is then measured by the

cost function: E(W ) =
(
Φ−∑

j wjφj

)2

. We seek to minimize the reconstruction
error E(W ), subject to the constraint that the weights wj that lie outside the
neighborhood are zero and

∑
j wj = 1. With these constraints, the weights for

points in the neighborhood of Φ can be obtained as [20]:

E(W ) =


Φ−

k∑

j=1

wjφj




2

=
k∑

j=1

k∑
m=1

wjwmQjm ⇒ wj =
∑k

m=1 Rjm∑k
p=1

∑k
q=1 Rpq

,

where Qjm = (Φ− φj)T (Φ− φm) and R = Q−1. (10)



In applications where dimensionality reduction is the major objective, one pro-
ceeds further and computes a low dimensional vector corresponding to each φi,
preserving the neighborhood structure by keeping the weights wj constant [20].
This work uses LLE only for obtaining the neighborhood structure in the train-
ing set and not for dimensionality reduction. Thus, we assume that a closed
surface S can be represented by a linear combination of its k nearest neighbors.
Stacking all the columns of φi one below the other, one can obtain a vector of
dimension D2, if φi is of dimension D ×D. Thus, given a test point Φ, one can
obtain the weights using equation (10) that minimize the reconstruction error
E(W ). The nearest neighbors are obtained from the training set by finding the
squared distance d2 (equation 9) between Φ and each of the shapes φi in the
training set.

2.4 Kernel LLE

Mercer kernels have been used quite successfully for learning in Support Vector
Machines (SVM) and in KPCA as mentioned before. The above LLE algorithm
can be generalized for nonlinear manifolds by employing the kernel trick [14]. In
[21], the author compares the discriminative power of LLE, KLLE and LPCA by
projecting the training data to a lower dimensional space and thereby comparing
the recognition rate of a given test sample. The methods presented in this work
are quite different than those proposed in [21], since we do not compute a low
dimensional data for LLE or KLLE, but compare their performances in the
input space itself. This is quite essential for shape analysis in which one needs to
compute how accurately a given data point can be reproduced in the input space
using these techniques. Thus, the method proposed in [21] uses LLE, KLLE only
for classification purposes, while we utilize it to see its performance in the input
space. A major contribution of this work is the formulation of a method to find
the pre-image of the projection in the kernel space, given the fact that we do
not know the mapping Ψ .

The basic idea behind KLLE is to minimize the error (given a test point Φ)

E(W ) =
(
Ψ(Φ)−∑

j wjΨ(φj)
)2

. Proceeding as shown in LLE before, we get
the following expression for the weights:

wj =
∑k

m=1 Rjm∑k
p=1

∑k
q=1 Rpq

where,

Qjm = (Ψ(Φ)− Ψ(φj))T (Ψ(Φ)− Ψ(φm)) = k(Φ,Φ)− k(Φ, φm)

− k(Φ, φj) + k(φj , φm) and R = Q−1.
(11)

The weights wj so obtained minimize the error E(W ) in the feature space
F , i.e., Ψ(Φ) =

∑k
j=1 wjΨ(φj) +

√
E = Ψ(Φ̂) +

√
E. Assuming E to be small,

we have Ψ(Φ) ≈ Ψ(Φ̂). Our goal now is to find the pre-image of Ψ(Φ). However,
an exact pre-image of Ψ(Φ) may not exist [16], hence we find an approximate
pre-image of Ψ(Φ) in the input space χ. Thus, we want to find the point Ψ(z)



which is closest to Ψ(Φ) and for which the pre-image can be computed. This can
be achieved by minimizing the following:

ρ(z) = ‖ Ψ(z)− Ψ(Φ) ‖2 ≈ k(z, z)− 2
∑

j

wjk(z, φj) + k(Φ,Φ),

where we have substituted the approximation for Ψ(Φ). Setting ∇zρ(z) = 0 and
using the kernel k(z, Φ) = exp(−‖z−Φ‖2

2σ2 ), one gets the following expression for
finding z:

z =

∑k
j=1 wjk(z, φj) φj∑k

j=1 wjk(z, φj)
(12)

This equation contains z on both sides of the equation and hence can be solved by
fixed-point iteration technique. However, the solution will depend on the starting
point and will be very susceptible to local minima. A unique (but approximate)
solution to z can be found by noting that

k(z, φj) = < Ψ(z), Ψ(φj) > ≈ < Ψ(Φ), Ψ(φj) > = k(Φ, φj)

where we assume Ψ(Φ) ≈ Ψ(z). Note that this assumption is valid since we are
trying to find the point Ψ(z) that is closest to Ψ(Φ). The error in the computed
pre-image will be proportional to the error in approximating Ψ(z) = Ψ(Φ), which
in general can be assumed to be small. As shown in [15], better results can be
obtained if the distance measure (9) (for d2) is used in the Gaussian kernel
instead of the Euclidean L2 norm and hence we use it in all our experiments as
described in the next section.

A pre-image can be computed not only for a Gaussian kernel, but for any
invertible kernel. If we assume a polynomial kernel k(φi, φj) =

(
c + φT

i φj

)d,
where d is the degree of the polynomial and c is any constant, then the pre-
image z of a point Ψ(Φ) is given by

z =

∑k
j=1 wjk(Φ, φj)

d−1
d φj

k(Φ,Φ)
d−1

d

(13)

Thus, LLE is a particular case of KLLE with a polynomial kernel of degree
d = 1 and c = 0. Once again, the k nearest neighbors can be computed using
the distance relation (9) or any other metric on the space of shapes [22, 11, 7,
23–25].

3 Experiments

In this section, we describe two experiments to test how well each method per-
forms given a training set of shapes. The first set of 3D shapes consists of the
left caudate nucleus and the second set consists of the left hippocampus. These
are structures in the brain for which a shape prior is often used in segmentation
algorithms. A typical measure to test the performance of these methods is to



see how well an unknown shape gets projected by each of these methods. In this
work, a quantitative measure was calculated by finding the number of voxels
that got mislabelled, i.e., by finding the set symmetric difference between the
projection and the original test shape.

The training set for the caudate nuclei consisted of 26 elements, each of
them embedded in a signed distance function. Figure 1 shows a few shapes in
the training set. In Figure 2, an “unseen shape” (i.e., a shape not in the training
set) is shown and also the pre-image of the projection using each of the meth-
ods. Table 1 shows the number of mislabeled voxels for each of the methods.
For LPCA and KPCA, 20 coefficients were used in finding the projection while
for LLE and KLLE 20 nearest neighbors were used so that we do not obtain
biased results in favor of a particular method. Clearly, the kernel methods per-
form better than their linear counterparts. More specifically, KLLE performs
almost as well or better than KPCA, but with a smaller computational burden.

Table 1. Mislabelled voxels for left caudate nucleus
Volume Volume Size LPCA LLE KPCA KLLE

1 2750 119 50 37 42
2 3774 134 105 92 81
3 2489 108 66 57 52

Fig. 1: Sample shapes of left Caudate nucleus from the training set.

The second training set of the hippocampii data contained 22 elements. Fig-
ure 3 shows a few shapes from the training set and figure 4 shows the original
and pre-images of projection for each of the methods. For this experiment, we
used 15 coefficients for LPCA and KPCA and 15 nearest neighbors for LLE and
KLLE. Table 2 gives the number of mislabelled voxels for each of the methods.
Figure 5 shows the weights assigned to each of the neighbors (for all the three test
shapes) using LLE and KLLE. Clearly, KLLE assigns larger weights to points
closer to the test shape than to points farther away. Thus, only points in the
locally linear patch of the feature space are assigned significant weights, whereas
other points are assigned weights close to zero. This nonlinear distribution is
expected since we used a Gaussian kernel. Once again, it is clear that KLLE
performs better than all the other methods. It should be noted that, LLE and
KLLE can perform even better with the proper choice of the number of nearest
neighbors as given in [20]. To make a fair assessment of each method, we kept k
(nearest neighbors) fixed and did not optimize the algorithm as given in [20].

Table 2. Mislabelled voxels for left hippocampus
Volume Volume Size LPCA LLE KPCA KLLE

1 1117 440 378 322 296
2 1108 306 258 212 205
3 1568 804 574 494 371



(a) Original (b) LPCA

(c) LLE (c) KPCA

(e) KLLE
Fig. 2: Projection of left Caudate nucleus (Volume 1) using each of the methods.

Fig. 3: Sample shapes of left hippocampus from the training set.

In all of the experiments above, the parameter σ used in the Gaussian kernel
was fixed to be some function of the average minimum distance between shapes
in the training set [8], i.e., σ2 = c 1

n

∑n
i=1 minj 6=id

2(φi, φj)., where c is a user
defined real number. The training data (hand segmented shapes) was obtained
from the NAMIC data repository of the Brigham and Women’s Hospital, Boston,
MA. The entire code was written in C++ using the ITK and VTK libraries.

4 Remarks

In this paper, we have proposed a new algorithm for finding an approximate
pre-image of a point in the kernel space in the context of Kernel LLE which
is a generalization of LLE to the kernel space. We have compared this method



(a) Original (b) LPCA (c) LLE

(d) KPCA (e) KLLE
Fig. 4: Projection of left Hippocampus (Volume 3) using each of the methods.
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Fig. 5: Weights assigned to the 15 nearest neighbors by LLE and KLLE for each
of the test shapes of hippocampus. On the x-axis, 1 is the closest neighbor, 15 is
the farthest.



with other methods such as linear PCA, kernel PCA and LLE in terms of its
capability to represent unseen shapes. Experiments show that it performs better
than LPCA and LLE and is comparable to KPCA, but with considerably fewer
computations. We certainly do not claim that KLLE is the best method to use
for any given training set of shapes, but it did give good results on the training
data on which it was tested.

Nevertheless, representing a shape using its nearest neighbors requires that
the training set contain sufficient data points. LPCA and KPCA have an in-
nate capability to “produce” shapes by varying the PCA coefficients. This is not
the case with LLE or KLLE. On the other hand, if sufficient amount of data
is available, LLE and KLLE can perform better than PCA based algorithms.
Another advantage of LLE and KLLE is that they allow one to learn shapes
of completely different geometries, within the same training set. The reason for
this is that these methods use only their nearest neighbors to find the projection
instead of using the entire training set which is the case with KPCA and LPCA.
One of the reasons why the kernel methods work better than their linear coun-
terparts is that, the set of signed distance functions (SDF) is not closed under
addition. Thus, the variations captured by linear methods are the variations in
the SDF’s and not in the embedded shapes, whereas the kernel methods capture
the variations in shapes and not the embeddings. We should also note that, the
performance of all these methods will get better if one has a large training set
(with shapes of the same object).

In this work, we have used signed distance function to represent shapes.
However, the algorithms used here do not depend on any particular type of
representation. Performing a detailed comparative analysis using all of these
methods with different representations (parametric and implicit) for shapes is
the subject of future research. We would also like to test these methods on a
wide variety of shapes with varying sizes of the training data set.
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